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“The repulsive force between two small spheres charged with the same sort of electricity is
in the inverse ratio of the squares of the distances between the centers of the two spheres.”

—Augustin Coulomb,
Memoir for 1785 of the French Academy of Sciences

Coulomb’s Law for Static
Electricity, Principle
of Superposition

Chapter Overview

Section 2.2 discusses the discovery of the inverse square law, and Section 2.3 presents
the law explicitly. In Section 2.4, we estimate the characteristic force on an electron in
an atom. Since the electrical force holds atoms, molecules, cells, and tissues together,
from the size of this atomic force we can estimate the strength of materials. Section 2.5
introduces and applies the principle of superposition, which holds for the addition of
forces of any origin, both electrical and nonelectrical. Section 2.6 shows two ways
in which symmetry considerations can be used to simplify calculations. Section 2.7
considers the force on a point charge due to a charged rod, both using numerical
integration (quadrature) and the analytical methods of integral calculus. Section 2.8
discusses problem solving and study strategy.

Introduction

The previous chapter summarized what was known, both qualitatively and quan-
titatively, up to about 1760. It included the law of conservation of charge. The
present chapter presents another quantitative law: Coulomb’s law for the force
on one point charge due to another, which varies as the inverse second power
of their separation—a so-called inverse square law. Chapters 1 through 6 all deal
with what is called static electricity, as produced, for example, by rubbing a comb
through your hair.

Discovering the Laws of Static Electricity

Before the spacial dependence of the electrical force had been established, the
following results were already known:

1. There are two classes of electric charge; those in the same class repel, and
those in different classes attract. This is summarized by the statement that
“opposites attract and likes repel” (Dufay).
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2. The electrical force lies along the line of centers between the two charges.

3. The force is proportional to the amount of charge on each of the objects. This
proportionality seems to have been known by Aepinus, who, in 1759, knew
everything about the force law except its specific dependence on distance.

There were also a number of observations that pointed, either directly or
indirectly, to the electrical force satisfying an inverse square law.

Gray. Around 1731, Gray had found that two oak cubes, one solid and the other
hollow, of the same exterior dimensions, received electricity in equal amounts
when connected by a slightly conducting “pack thread” that was touched in the
middle by an electrified tube. (If oak is not dry enough, it serves as an electrical
conductor.) This fact implies that for both solid and hollow cubes, the charge
resides on the outer surfaces. At the time no one realized that such surface
charging implies an inverse square law for the electrical force.

Franklin and Priestley. Around 1755, Franklin noticed that an uncharged, in-
sulated cork lowered into a charged metal cup is neither attracted to the cup’s
interior surface nor gains electricity on contacting that surface. He encouraged
his friend Priestley to investigate this phenomenon further. The latter concluded,
in 1767, by an analogy to gravity, that this implied the force law was an inverse
square. Newton previously had showed that there is no gravitational force on a
mass within a shell of uniform mass per unit area.

Robison. Robison performed electrical measurements using a balance that coun-
tered the torque due to electrical repulsion by the torque due to gravitation,
finding in favor of an inverse square law. See Figure 2.1, where the plane of
the holder assembly (including the charged spheres) is normal to the axis of the
handle. Robison did not publish his results of 1769 until 1801, in a supplement
to the Encyclopedia Brittanica.

Flexible holder

Figure 2.1 Robison’s gravity
balance. Spheres are given charges
of the same sign, and they repel
until the electrical repulsion
balances the pull of the earth’s
gravity on the upper sphere. For a
Rotate with this handle ~ given orientation angle, the
separation is measured.

Read angle from this dial
a1
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Cavendish. Cavendish—wealthy, eccentric, and reclusive—performed many
important scientific studies, including torsion balance studies of the gravitational
force between two spheres, and what are probably the first measurements of
the relative electrical conductivities of different materials, obtained by compar-
ing the shocks he received on discharging a Leyden jar through different wires.
Probably inspired by Priestley’s work, and thus thinking in terms of an inverse
square law, in 1770 Cavendish measured the charge on the inner of two con-
centric metallic shells connected by a fine wire. He found it to be zero, within
experimental accuracy. This indirect method established that, if the electrical
interaction satisfies a power law, then within a few percent it is an inverse square
law. Not until Maxwell read Cavendish’s notebooks, nearly 100 years later, was
it appreciated how much Cavendish had done and understood.

Coulomb. Coulomb, a military engineer, performed numerous first-rate studies
in physics, including friction and the elasticity of thin wires. The latter work led
him to invent the torsion balance (independently of Cavendish), which he used
to study static electricity and per-
Fixed —_| Q/ Adjusting handle  manent magnets. See Figure 2.2.
For springs, Hooke (around
1650) found that the force F
opposing a length change by x
is proportional to x: F = —Kx,
where K is a measureable spring
constant. Coulomb found a
similar relation for torsion fibers:
the torque 7 opposing an angular
twist by ¢ (in radians) is propor-
tional to ¢: T = —x¢, wherek isa
measureable torsion constant. The
torque could thus be determined
from the angular displacement.
Since the moment arm [ was
known, the force magnitude
|F| could then be deduced, via
|F| =t/ = kp/ll.
Coulomb charged up two spheres equally (see Figure 1.8) and found that
the force decreased with time. This he attributed to a loss of electric charge. He
eliminated some of this decrease by improving
the insulation in the supports. However, there
was additional loss, due to the atmosphere, which
was more extreme in humid weather. Account-

Insulator ¢ Insulating rod

— Torsion fiber

9\ Fixed

Figure 2.2 Coulomb’s torsion balance. Spheres
are given charges of either sign, and they rotate
until the torque from the electrical force
balances the torque from the torsion fiber. For
a given orientation angle, the separation is
measured.

/&

a2

Even in dry weather such loss of charge
occurs due to stray positive and nega-
tive ions in the air; the sphere attracts
ions of charge opposite to its own. Only
around 1910 was it discovered that such
ions are produced by high-energy par-
ticles from outer space, called cosmic
rays. Most cosmic rays are protons.

ing for the rate at which the charge decreased
from his spheres improved the accuracy of his
measurements. By using electrostatic induction,
he produced oppositely charged spheres (see
Figure 1.12). (However, in analyzing his results,
he did not include the effects of electrostatic in-
duction: for each sphere he considered the charge
to be located at its center.) Coulomb published
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his work, which was well known in his native France, but 20 years passed before
it was to be appreciated elsewhere.

The Inverse Square Law of Electricity:
Coulomb’s Law

Robison, Cavendish, and Coulomb all concluded that the electric force between
two distinct point objects with charges g and Q varies as the inverse square of
the separation. Thus

.k
|F| = |q2Q I, (force between two charges) 2.1
r
where the constant k depends upon the units for force, distance, and charge.
When charge is measured in SI units of the coulomb, distance is measured in
terms of meters, and force in terms of newtons, the constant k can be determined.
It takes on the value

N-m?
c?’

k = 8.9875513 x 10° 2.2)

which usually will be taken to be k£ = 9.0 x 10° N-m?/C?. In later chapters, it
also will be useful to use the quantity €, called the permittivity constant, or the
permittivity of free space, given by

1 1 C?
- = — =8.85418781762 x 10712 ——.. 2.3
4rey’ O dxk x N-m? (23)

k

SI units were not available to Coulomb, but that was not necessary in order
to establish the inverse square law. Recall that the coulomb is defined in terms
of the unit of electric current, which is the ampere. Thus a coulomb is the
amount of charge that passes when an ampere of current flows for one second, or
C=A-s.

The results (1-3) in Section 2.2, and (2.1), can together be expressed as a
single vector equation for the force F on a charge q due to a charge Q. When
specifying a vector, we will employ an arrow or—if it is a unit vector—a hat above it.
Using the notation that the unit vector # points toward the observation charge
q, from the source charge Q, we have

w0,

: (force F on charge g, # toward g) 2.4
-

F =

The bare geometry in the problem statement (i.e., what the problem pro-
vides) is given in Figure 2.3(a). No matter what the charges g and Q, in finding
the force on g, # points to g from Q,

If g and Q are like charges, the force on g also points to g from Q. The corre-
sponding geometry solving the problem (i.e., what the student must provide) is
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Figure 2.3 Geometry of interacting charges of the same
sign. (a) The charges alone. (b) The geometry associated
with the force F acting on g, with unit vector # pointing
toq.

given in Figure 2.3(b). The tail of the force on q is placed on q. In this chapter,
we will sometimes give both the bare geometry and the solution geometry that
students must learn to provide; in later chapters, we will give only the latter.

To obtain the force on Q due to g, we use the unit vector to Q from g,
which is opposite the unit vector to g from Q. Hence the force on Q due to g
is opposite the force on g due to Q, and action and reaction is satisfied. A figure
of the force on Q would place the tail of the force on Q,

Simple Applications of Coulomb’s Law

As mentioned repeatedly, the electrical force, or C force, holds together atoms,
molecules, and solids, and indeed holds together our very bodies. For that reason,
it is important to get a feeling for how large a force it provides, both within
atoms and within nuclei. We will not pursue these questions in great detail
because classical mechanics (i.e., Newton’s laws) cannot be applied literally at
such small distances. In that case, quantum mechanics, an advanced topic, provides
an accurate description.

Coulomb’s Law, Atoms, and the Strength of Materials

A good rule of thumb is that atoms have a characteristic dimension of about
10719 m, a unit that has been named the angstrom, or A. Some atoms are
larger, and some are smaller, but that is a good starting point. (Remember,
it is more important to get the exponent correctly than to get the prefac-
tor, although both are needed for precision work.) Therefore, consider the
force on an electron in a hydrogen atom, using a separation of r = 10710 m.
(Actually, for the hydrogen atom, the appropriate distance is about half that.)
Coulomb’s law, with both the electron and proton having the same magnitude
gl =10 =e=16x10"1C for the charge yields for the electrical force be-
tween the electron and proton F: = ke?/r?> = 2.3 x 1078 N. This appears to
be small, but not in comparison with the force on an atom due to the earth’s
gravity. Take m, = 1.67 x 10727 kg for the atomic mass (essentially, the mass of
the proton since the electron is so much less massive). Then, with g =9.8 m/s?,

F&r e mg = 1.64 x 10725 N. Thus, comparison of the electrical force within

pearth —
the atom to the earth’s gravitational force on the atom shows that the latter is
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negligibly small. This has profound structural significance for individual atoms
and even for large molecules: their structure is indifferent to the local gravita-
tional environment. Only on the scale of larger objects, such as trees and people,
does gravity affect structure.

PV TEN T WAl Electron—proton gravity within the atom is negligible

The gravitational force of attraction between the electron and the proton
is extraordinarily small. With G = 6.67 x 10~!! N-m?/kg? and m, = 9.1 x
10731 kg, we obtain F&}" = Gmm,/r?> = 1.01 x 10~* N, a force about 10%
times smaller than the electric force between them.

VT EN T W Material strength is atomic force per atomic area

Let us take an interatomic force of 1078 N to correspond to the force between
nearby atoms in a bulk material. Taking atoms to be typically about 3 x
1071% m apart, so with a cross-section of an atomic separation squared, or
(3 x 10719 m)? =9 x 1072° m? ~ 107!° m?, this gives a force per unit area
of on the order of 10'! N/m?. A commonly measured property of materials
is the force per unit area needed to produce a given fractional change in the
atomic separation. This is known as the elastic constant. For real materials, the
elastic constants are also on the order of 10! N/m?. This agreement indicates
(but does not prove) that electrical interactions are responsible for the elastic
properties of materials. Assuming that breakage occurs when the fractional
change in atomic separation is on the order of 0.1 gives a tensile stress on the
order of 10'Y N/m?, much higher than for real materials: the tensile stress of
iron is on the order of 10° N/m?, and for string it is on the order of 107 N/m?.
This indicates that something else determines when a material breaks. In the
1930s, it was discovered that details of atomic positioning, and slippage at the
atomic level via what are called dislocations, are responsible for the relatively
low tensile stress of most materials.

Estimate of adhesive strength. Let us take a modest interatomic force of
1071° N to correspond to what might occur for an adhesive. Let us also take
there to be one such interatomic force per 10~ m in each direction along the
surface. (This corresponds to about 1 every 1000 atoms.) For a 1 cm? = 10~* m?
area, there are 10~* m?/10~* m? = 10'° such interatomic forces, leading to a net
force of 1 N, an appreciable value. Clearly, the Coulomb force is strong enough
to explain the behavior of adhesives—and the adhesion between living cells.

Nuclei and the Need for an Attractive Nuclear Force

The Coulomb force also acts within atomic nucleii, whose characteristic dimen-
sion is 107> m, which is called a fermi. There are two protons in a He nucleus,
which repel each other because of the Coulomb force. We could compute this
force from (2.1), but it is easiest to obtain it by noting that in this case the
charges have the same magnitude as for the electron and proton of the previous
section, but the distances are smaller by a factor of about 10°. Since the Coulomb
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force goes as the inverse square, the force of repulsion between two protons in
a helium nucleus is larger by about 10'° relative to the electron—proton force in
an atom. Thus F¢ = IOIOF;l = 2.3 x 10? N, which would support a mass ex-
ceeding 20 kg under the earth’s gravity. This is enormous for such a small object.
What keeps the nucleus from blowing apart is an attractive nuclear force between
the nucleons (protons and neutrons). This force has a very short characteristic
range, on the order of a fermi, but it is very strong so that within its range it can
dominate the Coulomb repulsion.

Consider the possible types of He nuclei. Because of the Coulomb repulsion, too many
protons relative to neutrons is bad for nuclear stability. That is why there is no such
thing as a stable 2He nucleus: only one pair of attractive nuclear interactions (between
the two protons) is insufficient to overcome the Coulomb repulsion. On the other hand,
3He has two protons and one neutron, with three pairs of attractive nuclear interac-
tions (proton-proton, and two proton-neutron) that overcome the Coulomb repulsion
(proton-proton). The isotope “He, with two protons and two neutrons, has six pairs
of attractive nuclear interactions, and is yet more stable than 3He. Additional neutrons
must reside in nuclear orbitals that are far from the center of mass of the nucleus, and
thus do not participate fully in the attractive interaction of the other nucleons. The iso-
topes °He and ®He, although observed experimentally, are unstable, and helium nuclei
with larger numbers of neutrons have not been observed at all. Neutron stars exist only
because they are so massive that the gravitational attraction is large enough to keep
them together.

A Simple Charge Electrometer: Measuring the Charge
Produced by Static Electricity

Charge electroscopes (such as gold-leaf electroscopes, or the aluminum-foil elec-
troscope of Figure 1.25) and charge electrometers are devices for measuring
the charge on an object, the electrometer being more quantitative. They use
the repulsive force between like charges. Figure 2.4 depicts an experiment to
determine how much electricity can be pro-
duced by rubbing. Hanging from a common
point are two threads of length [ and two
identical small conducting spheres of mass
m, which have been given the same charge
q by the charge-sharing process described in
Section 1.5.2. Let us find the relationship be-
tween the angle 6 and the charge g; clearly,
the larger the charge, the larger the angle of
separation.

This is a problem in statics, where each

ball has three forces (each with a differ-

s/2 =1sin 6

Figure 2.4 A simple electrometer.
The two spheres are of equal
mass m and equal charge q. By

measuring the separation s or the €Nt origin) acting on it: gravity (downward),
angle 0 (which are related), the electricity (horizontally, away from the other
electric force and the charge can ball), and the string tension T (along the

be determined. string, from the ball to the point where the
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string is taped to the stick). Neither the electrical force nor the tension is known.
We first discuss some geometry: from the separation s we can deduce the angle
that the strings make to the normal:

ng =2 _ % 25
sinf = = (2.5)

From the equations of static equilibrium applied to either ball (to be explicit,
we'll consider the ball on the right), we can obtain two conditions. These can be
used to eliminate the tension and to relate the electrical force to the gravitational
force and to the geometry of the problem.

First, the ball on the right (which we will consider to be the observer) feels
a downward force of mg from gravity, and an upward force component T cosé
from the string tension. In equilibrium, since the sum of the vertical forces is
zero, or y_ F, =0, we have mg = T cos6. This can be rewritten as

mg

T = .
cosf

(2.6)

In addition, the ball feels a rightward electrical force F, = kq?/s? and a leftward
force component T sin 6 from the string tension. In equilibrium, the sum of the
horizontal forces is zero, or >_ F, =0, so

kq? .
F, = e Tsin® = mg tan b, 2.7)

where we have eliminated T by using (2.6). Solving for g, we obtain

/mg tan 0
q=s mg%‘ (2.8)

To be specific, take length [ = 10 cm = 0.1 m, mass m =4 g = 0.004 kg,
and separation s = 2.5 cm = 0.025 m. Then, by (2.5), sin6 = 0.125, so cos0 =
v 1—=1(0.125)2 =0.992 and tan6 = 0.125/0.992 = 0.126. Using m, s, and 6
from the statement of the problem, and g = 9.8 m/s?, (2.8) gives ¢ = 1.85 x
1078 C as a typical amount of charge that can be obtained by rubbing a comb
through one’s hair. By analyzing Figure 2.4 quantitatively, we have turned a
qualitative electroscope into a quantitative electrometer!

At small 6, where sin§ and tan 0 bg)th vary as 0, s varies as § and thus g varies
as #2. Correspondingly, 6 varies as q3. This rises very quickly for small g, so a
measurement of angle is quite sensitive for very small charge. However, for very
large charge, all angles will be near 90°, so a measurement of angle is insensitive
for very large charge.

A complete solution would require the tension T of the string, given by (2.6).
This quantity becomes relevant if we have a weak string that easily can be broken.
In most mechanics problems, physicists don’t worry about such questions, but
mechanical and civil engineers make a living out of them.

This problem has gravity, strings, and electricity, and at first it seems like
apples and oranges and bananas. Just as you can add the scalars representing the



88

Chapter 2 ® Principle of Superposition

masses or calorie contents of different types of fruit, so you can add the vectors
representing different types of force.

Vectors and the Principle of Superposition
What We Mean by a Vector: Its Properties under Rotation

Sections R.9 and R.10 discuss vectors in detail. If you aren’t yet comfortable
with vectors, and you haven’t already read those sections, read them now.

It is so important to drive this message home that we’ll repeat what you
already know. Vectors are characterized by magnitude and direction—and by their
properties under rotation. Quantities like force, position, velocity, and acceleration
are vectors. Their magnitudes do not change under rotation, and the orientation
between two such quantities does not change under rotation. If a position vector
and a force vector are at 40° to each other, then after any rotation they remain
at 40° to each other.

In contrast, consider pressure P, temperature T, and energy E. None of these
three quantities change under a rotation in space; they are scalars. Hence the
three-component object (T, P, E) does not transform as would a vector under
rotations in space. Merely having three components doesn’t assure “vectorness.”

The Principle of Superposition: Add 'Em Up

Because forces are vectors, when there are individual forces acting on a single ob-
ject, the net force is obtained by performing vector addition on all the forces. This
is called the principle of superposition. We used this principle in the electrometer
example, where the three forces each had a different source. In what follows, we
will use the principle of superposition to add up many forces of electrical origin.
A force F may have components along the x-, y-, and z- directions. We specify
these directions as the set of unit vectors (%, y, 2), or @i, 7, k) Indeed, we will
sometimes write <> for i and < for —i, 4 for j and ¢ for —j, and & for k (out
of page) and & for —k (into page). Thus %,9,2) = (i, 7,k) = (=, % 0). You
should already be accustomed to seeing numerous ways to write the same thing.
For certain problems involving gravity, it is often convenient to let down corre-
spond to . The ways in which we write the laws of physics all depend upon
conventions (e.g., we use right-handed, not left-handed, coordinate systems).
However, the laws themselves do not depend on these conventions.
Explicitly, we write

F=F&+F3y+F.z2, (2.9)

where F, is the x-component of F, and so forth. By the rules of the scalar product,
where - =1, £ - ¥ = 0, and so forth, we have

F-%=F.. (2.10)

Similarly, we can determine F, and F,. Thus, if F is specified in terms of its mag-
nitude F = |F|and its d1rect1on it also can be written in terms of its components.



2.5 Vectors and the Principle of Superposition 89

a2 a2 h .
R 4 O a
5
7 r w
> a1 a1
s} O
(a) (®)

Figure 2.5 (a) Geometry for the force on g due to q; and
q>. Lowercase vectors refer to distances from the origin,
and uppercase vectors refer to relative distances.

(b) Force on g, due to q; and g5.

Likewise, if F is specified in terms of its components, then its magnitude can be

computed from
|F| = /F2+ F2 + F2. (2.11)

When, in addition to the charge g at 7, there are many other charges, by
the principle of superposition the total force is the vector sum of all the forces
acting on q. Consider a situation with many charges g; at respective positions

. Figure 2.5(a) depicts only q1 and 42, in addition to gq. For the pair
q and q, we have 7 =R, +r1, so Ry =7 —#1. More generally, R, =7 — 7.
With R; = R;/|R;|, we see that R; points to the observation chargeq at7. For exam-
ple, if in Figure 2.5(a) 7 = (4, 4, 0) and 7, = (16, -3, 0), then Ry =(-12,7,0),
IR)| = /193 = 13.89, and R, = (—0.864, 0.504, 0).

We generalize (2. 4) to obtain the force on q due to g as F; = (kqqi/ RHR;.
Summing over all F; yields the total force on q. Explicitly, it is

(force F on charge q at 7, R; towardq, R; =7 —7;) (2.12)

Let’s talk in terms of input and output. The input consists of the charge g
and its position 7, and the charges g; at the positions ;. For two source charges,
this is given in Flgure 2.5(a). The output consists of the individual forces F; and
their vector sum F. This is depicted in Figure 2.5(b) for the cases where the
charges g, q1, and g, are all positive or all negative. The relative lengths of F,
and F; can only be determined when actual values for ¢, q1, and g, are given;
therefore, Figure 2.5(b) is only a schematic. Each force on g is drawn with its
tails on g, as if a person were pulling on a string attached to g.

Adding force magnitudes almost always produces
garbage

Adding vector magnitudes to obtain the magnitude of a sum of vectors
only works when the vectors have the same direction. Thus, adding vector
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magnitudes usually gives incorrect answers. For example, if two horses pull
on opposite sides of a rope, each with 200 N force, the resultant vector force
on the rope is zero, so its magnitude is zero, not 400 N.

Let’s dignify this important result with the unnumbered equation

F=F,+F,, but|F| < |F1|+ |F>|, when adding two forces.

Another example of this result is given by the forces in Figure 2.5(b). This sort
of equation (called a constraint) holds when we add two vectors of any type.

m Cancellation of two collinear forces

Consider that, for two charges q; and > whose positions are known, we
would like to know where to place a third charge g so that it feels no net
force due to q; and g2. We are free to choose a geometry where the charges
are along the x-axis, with g; at the origin, and g» a distance [ to its right.
Thus our specific question is: where should g be placed in order to feel no
net force? (Our answer will be independent of g, a fact that is related to the
concept of the electric field, which will be introduced in the next chapter.)
Before performing any calculations, note that for there to be zero net force, the
two forces on q must have equal magnitude but opposite direction. The latter
condition can only hold if the third charge is placed on the line determined
by g1 and gz. There are two possibilities.

(a) g1 and g; have the same sign. In this case, g should be placed between
q1 and ¢, at some distance s from g1 (to be determined) where g will
feel canceling attractions (or repulsions) F; = —F; from g1 and g>. To be
specific, let all charges be positive. See Figure 2.6(a). Then F points away
from q; and F; points away from ¢, by “likes repel.” As in Figure 2.5(b),
the forces on g are drawn with their tails on q. Note that the position s
where the forces F1 and F» cancel will not Change if the signs of all the
charges are reversed, because again “likes repel.” Moreover, the position
s where the forces F and F» cancel will not change if the sign of g is
reversed, or if the signs of both g; and g, are reversed, because then,
although the forces change direction, they still cancel.

Let the magnitudes F; ; = |F1 2]. By (2.1) or (2.4), the equilibrium
condition that F; = F; gives

kaqi  kaqp
2 (1—s)%

Canceling kg, taking the positive square root (remember, we have already

(2.13)

91> D@2 | < g,
o B a Hha K q Foaq a4
OO~ 0 09—+ 0O -
e T
I l 1 I a+l 1
() (®)

Figure 2.6 Locating the zero-force position. (a) When the
two source charges have the same sign. (b) When the two
source charges have opposite sign. How would this figure
look for g < 0?
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determined that 0 < s < [), and inverting each side, we obtain

Solving for s, we obtain

In taking limits where some quantity
goes to zero or to infinity, it is often
convenient to make that quantity a di-
mensionless ratio. For the test charge to
approach the weaker charge, / is fixed
and s gets smaller. We could obtain the
same limit by keeping s fixed and letting
I get larger. Using the dimensionless ra-
tio s/I takes care of both possibilities.

s _l—s

N (2.14)
__ L (2.15)
T Vi + 1 '

This value of s is independent of the value
of g; doubling g doubles each force, so
they continue to cancel at the same posi-
tion. As checks, note that (1) s =1/2 for
a1 = q2 (i.e., the test charge is equidistant
between two equal charges); (2) s/l — 0
as q2/q1 — oo (i.e., the test charge ap-
proaches the weaker charge, here q1); and
(3) s/l — 1 as g2/q1 — O (i.e., again the
test charge approaches the weaker charge,
now ¢).

(b) 41 and g, have opposite sign. It will be sufficient to consider the case

q1(<0), g2(>0), and q(>0), because the other cases of this type are re-
lated to this one simply by changes in direction of both forces. To be
specific, let |q1] < |g2|. Then g should be placed on the same line, but to
the left of the weaker charge g, so that proximity can compensate for
weakness. See Figure 2.6(b). The two forces will cancel when g is placed
a distance s (to be determined) to the left of 1. By (2.1), the equilibrium
condition that F; = F; gives

kqg';“' = é’ql‘f)g. (2.16)
Solving for s as before, we now obtain
l
S= el —1 (laz/a1l > 1). (2.17)

As checks, note that (1) s — 0o as |g2/q1| — 1 (i.e., for equal strength

source charges, the only way their forces cancel out, if one is nearer g than
the other, is if g is at infinity); and (2) s — 0 as |q1/qz2| — O (i.e., the test
charge approaches the weaker charge, here q;).

We are often tempted to develop a totally general equation that will include all cases—
“one size fits all.” However, if we generalize too soon, we might not notice some
fundamental distinctions. This often occurs in computer programming, where an algo-
rithm developed for one situation does not work properly when applied to another. The
related cases of like and unlike charges really should be treated separately.
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m Addition of two noncollinear forces

If you don’t know at least two ways to
solve a problem, you may not really un-
derstand the problem in a deeper sense.

Competent pr

solve a given problem in multiple ways.

Now consider the force on q due to q; and g2 when the three charges do
not lie along a line. In principle, the charges can be anywhere with respect
to a fixed coordinate system, each of them requiring three numbers (x, y, z)
to specify its position. However, because there are only three charges, and
three noncollinear points define a plane, which we may choose to be the
xy-plane, only two numbers (x, y) per charge will be required to specify
each position. Further, we can place g at the origin, so 7 = 0, leaving only
two numbers (x, y) per charge to specify the positions of g; and g,. The last
allowed simplification is to take g to lie along a specific direction, such as %.
The third charge, g3, can lie anywhere in the xy-plane. Thus, the geometry is
specified with a total of three numbers, which we take to be the distances R,
and R; of q; and g to the origin, and the angle 8, that R, makes with respect
to the x-axis (we have already taken #; = 0). The problem is to find the
net force on gq. To be specific, let g = 2.0 x 107° C, q; = —4.0 x 107° C and
g =6.0x10"7°C R =0.2m, R, =0.3m, and 6, = 55°. See Figure 2.7(a).
Find the net force on q.

Solution: There are at least two ways in which we can proceed to solve this prob-
lem. We shall call one the common sense method, which is particularly appropriate
when there are only a few forces involved. (We call it the common sense method
because it has been said, with much truth, that science is simply common sense,
but more refined.) We shall call the other method the formal method because it
is a bit akin to the higher mathematics to which J. J. Thomson was referring in
the quote at the end of Section R.5. When we have a choice, the first method is
preferable, but there are times when the only practical method is the second one.
We will use both in the present case.

The common sense method first finds the
magnitude of each force acting on g (the ob-
server) by using (2.1), then gets the direction
of each force by “opposites attract, likes repel,”
and finally performs the vector addition. That
is more or less what we did in the previous

actitioners in any area can

example. The formal method uses (2.12) to
compute each force in terms of its vector components (so we actually compute
the magnitudes of the individual forces), and adds up the components.

a2 a2
O O
RZ / ’ Rz / ’
e e
7 7
q./ \92 f"\]l q /X@z F] a1
R~ /\<9 Ry
B F
(a) (b)

Figure 2.7 Force on g at origin, due to g1 and g5.

(a)

Geometry of the problem. (b) Solution of the problem

in terms of individual forces and the total force.
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Common sense method. First, we find the magnitude F; = |F | of the force
acting on g due to q;. By Coulomb’s law, as in (2.1),

5 _klaail _ (9x10°N-m?/ €12 x 107 C)(=4 x 10° O)|
TR 0.2 m)?

=18x10°N.

Note that F; must be positive because it is the magnitude, or absolute value, of
F. Similarly,

F klgazl (9 x 10° N-m? / C*)|(2 x 1072 C)(6 x 10~° C)|
R (0.3 m)2

=12x10°N.

Using “opposites attract, likes repel,” we can now draw the force diagram (com-
pare Figure 2.7b). This leads to the force components

F,=F —Fycos0, =1.8x 100N - 1.2 x 107% N cos 55°
=1.112x 107° N,
F, = —F,sin6, = —0.983 x 107° N.

Thus, as in Figure 2.7, F lies in the fourth quadrant. We also have

F=|F|=/F2+F2=1484x10°N,

and F makes an angle with slope

tanf = & = —0.884,
F,
corresponding to an angle 6 in the fourth quadrant, with 6 = —41.5°, or —0.724
radians. If F had been in the second quadrant, its tangent would also have been
negative, so to obtain the correct angle we would have had to add 180° (or 7
radians) to the inverse tangent of tan 6.

If the positions of both g; and g5 are rotated by 24° clockwise, F too is rotated by 24°
clockwise, to an angle of —41.5 — 24 =—65.5° relative to the x-axis. Its magnitude is
unchanged. Thus, the value of F, for the rotated charges would be |F |cos (—65.5) =
0.613 x 107® N. This way to calculate the rotated F; is simpler than recomputing and
adding the x-components of the rotated versions of the individual forces.

Formal method. Even with the formal method, there are at least two ways to
proceed. We may rewrite (2.12) as

F=YFR, Fo=" (2.12)
; R;
or as
L kags =
F=Y" ;1‘31 R, Ri=r-7. (2.12")

Using (2.12'), we must first compute the signed force F;* due to the i charge,
and then the unit vector R;. Thus, as an intermediate step, we can readily
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Table 2.1 Force Calculation

1 2 3 4 5 6 V4 8 9 10 11
* [ X [ Y w( Z
“ owoooaw X vz R F(E) ) (R
determine the magnitude of each of the individual forces, via F; = |F;| = |Ff,

and we can also readily determine the direction of the force. Use of (2.12'),
although part of the formal approach, is closely related to the commonsense
method. In Appendix B we use (2.12') to solve the last example using a spread-
sheet.

Equation (2.12") requires fewer operations than (2.12’). This is because
(2.12") does not require the intermediate computation of R; = R;/|R;|. However,
with (2.12") we do not obtain the magnitude and direction of each individual
force. Both procedures work. (Different strokes for different folks.) Table 2.1 in-
dicates specifically what computations would have to be made using (2.12") for
the force F on q at (x, y, z) due to q1 at (x1, y1, z1). The table uses X; = x — x;,
and so on, and F;* of (2.12"). Columns 9, 10, and 11 contain the x-, y-, and

z-components of F.

Use of Symmetry

When the source charge is symmetrically placed, and the observation charge is at
a position where this symmetry is evident, certain simplifications can be made.
We will discuss two ways to use symmetry. First, in doing a computation we
notice that certain terms must add or cancel. Second, by some general principle
or principles, and the fact that force is a vector (so that it rotates when the source
charges rotate), we learn that certain possibilities are disallowed.

3'ET P XM Force due to two equal charges

Let there be two equal source charges Q symmetrically placed on the x-axis,
and the observation charge g be along the y-axis. In what direction does the
net force on g point?

Solution: See Figure 2.8(a), where the indi\iidual forces Fy and F », and their
resultant F have been drawn. By symmetry, F must be along the y-axis because
the x-components of the individual forces cancel.

m Force due to two equal and opposite charges

In Example 2.4, let one source charge be replaced by —Q, as in Figure 2.8(b).
In what direction does the net force on g point?

Solution: By symmetry, the net force must be along the x-axis because now the
y-components of the individual forces cancel.

The above arguments are computational in nature. Here is a noncompu-
tational symmetry argument. Consider first the two equal source charges Q
in Figure 2.8(a). Rotating them by 180° about the y-axis gives an equivalent
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() )

Figure 2.8 Force on g along perpendicular bisector
between two charges. (a) Equal charges Q, (b) Equal and
opposite charges £ Q.

configuration, and therefore the net force on g does not change. Specifically,
F, does not change under this interchange of charges. However, for any vec-
tor (including the net force), a rotation about y must change the sign of
its x-component. The only way for F, to both change sign and not change
sign is if F, = 0. Consider now the equal and opposite source charges &+ Q of
Figure 2.8(b). Rotating by 180° about the y-axis, which interchanges the charges,
must preserve the y-components of the forces. But interchanging the charges re-
verses the directions of the individual forces, including the y-components. The
only way for F; to both change sign and not change sign is if F, = 0.

S EINT W HW Force due to three equal charges

Let there be three equal source charges q1 = g2 = g3 = Q placed at the cor-
ners of an equilateral triangle. Let an observation charge g be placed at the
very center of the triangle. What is the net force on the observation charge, g?

Solution: See Figure 2.9, where the individual forces on g are given. The net
force on q is zero, as can be established by algebraic computation, by numerical
computation using particular values for the side of the triangle and the charges,
and by the following argument. The forces on g due to each of these charges all
have the same magnitudes, but are rotated by +120° relative to one another. The
forces thus form the arms of an equilateral triangle that, under vector addition,
sum to zero.

A noncomputational symmetry argument for

=0 Example 2.6 begins by observing that the net
. O N force must lie in the xy-plane. Because force
F K is a vector, if the source charges are rotated by

120°, either clockwise or counterclockwise, the
force must rotate in the same way. However,
since q1 = q2 = q3 = Q, this rotation produces
the original charge distribution, and therefore
Figure 2.9 Individual forces on the same force. Hence the force must be zero.
g at the center of three equal For a large number (e.g., 47) of equal source
charges g1 = 2 = g3 = Q at charges at equal radii and angles, you can gener-
the vertices of an equilateral alize this argument to show that the force on a
triangle. charge at their center is also zero. For this more

q
=00 R Oa=0
13}



96  Chapter 2 ® Principle of Superposition

complex case, there is no computational symmetry argument. (Of course, for an
even number of charges, the net cancellation is obvious because opposite pairs
would produce canceling forces.)

Force Due to a Line Charge: Approximate
and Integral Calculus Solutions

Let us obtain the force F on a charge q at the origin, due to a net charge Q that
is uniformly distributed over the line segment from (a, —[/2, 0) to (a,[/2,0).
See Figure 2.10(a).

Note that F, = F, = 0, by symmetry. In principle, to find F, requires calcu-
lus, where we break up the continuous line charge into an infinite number of
infinitesimal point charges d Q, and add up their (vector) forces dF on q. See
Figure 2.10(b). However, we will first consider what happens when we approx-
imate the line charge by a finite number of point charges, and we add up their
vector forces, using a spreadsheet.

Approximate approach. Spreadsheets can calculate numbers from algebraic
formulas, but cannot perform algebra. (See Appendix B for an introduction to
spreadsheets, in case you are not already familiar with them.) Therefore we will
have to use specific values for q, Q, a, and . We can employ our earlier problem,
merely extending the number of rows to accommodate the number of charges
in our approximation. Let us take g = 1072 C, 0=5x 10" C,a=1 m, and
[ = 7 m. Now consider various approximations to the line charge Q.

1. Approximating Q by a single charge may be done by putting all of Q at the
midpoint (1, 0) of the line. In this case, there is no y-component, so all the
force is along the x-direction. This gives a force of 45 x 10~ N.

2. Approximating Q by two subcharges may be done by breaking the line into
two equal segments of length 7/2, and placing Q /2 at the segment midpoints,
given by (1, 7/4) and (1, —7/4). This gives a force of 5.5 x 1079 N.

T 4 “/Total Q T 4 ‘
~
y y #1
b Ll ao-Su i
yh ﬁ
q l a o [ =7
l X —» X —» \ xX —»
#2
dF
N #3
Y Y Ly
(@) () ()]

Figure 2.10 The force on a point charge due to a line charge. (a) Statement of the
problem. (b) Force due to an element dgq. (c) Force due to a discretization of the line
into three equal charges.
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Table 2.2 Force as a function of the number n of subcharges

n 1 2 3 4 5 6 7 8 9 10 11 12

F, 45 550 16.83 10.60 13.22 12.01 1253 1230 12.40 123540 123714 12.3631

3. Approximating Q by three subcharges may be done by breaking the line into
three equal segments of length 7/3, and placing Q /3 at the segment mid-
points, given by (1,7/2 - (1/2)-7/3) = (1,7/3), (1,7/2 - (3/2)-7/3) =
(1,0),and (1,7/2 —(5/2) - 7/3) = (1, —7/3). See Figure 2.10(c). This gives
a force of 16.83 x 1072 N. [These calculations are worth doing yourself,
either with pencil and paper or with a spreadsheet, to verify that you re-
ally understand how to use (2.12).]

More generally, we have Q/n on n subcharges, at the positions (1,7/2 —
(1/2)-7/n),(1,7/2 — (3/2) - 7/n), and so on. By using the calculation capability
of the spreadsheet, we can compute F, for various n. By the symmetry of the
problem, only the x-components of the individual forces need be calculated.
Moreover, the net force F points to the left, so F, has a negative sign. Table 2.2
shows the magnitude of the sum of the x-components for n segments. It is given
as F,, and is in units of 107 N for n up to 12. The sums are converging.

Calculus approach. First set up the problem, which means picking out a
typical piece of charge. Figure 2.10(b) shows one d Q in the interval dy centered
at y. The line is divided into infinitely many d Q’s spanning the range from
y = —1/2 to y =1/2. Corresponding to this y is an angle that we call 6, and a
direction R to the observation charge q. The d Q acts with a force dF on q. Our
goal is to add up the dF s for all the dQ’s that constitute the line charge, to
obtain the total force F acting on g.

There is an order in which you must perform ordinary mathematical opera-
tions: multiplication and division are performed before addition and subtraction.
Similarly, there is an order in which you must perform the mathematical oper-
ations associated with integral calculus: identify the type of differential you are
adding up; find its vector components (if it is a vector); then separately add up each
set of components. In the present case, we add up the x-components d F, to obtain
F,, and so on.

As in the previous subsection, to find the force on g we need only consider the
x-component of the force, or F,. (By the symmetry of the problem, F, =0.) Now,

instead of n segments of length 7/n and charge
(Q/7)(7/n) = (Q/n), we have an infinite num-

ber of segments of infinitesimal length ds = dy >

There are many notational choices we 0. The charge per unit length is A =dQ /ds =
can employ to solve a problem, espe- (Q/1) because the charge Q is distributed uni-
cially in choosing intermediate variables. formly over . Thus dy has charge dQ = Ady =
However, the final answer must be in- (Q/Ddy. (Of course, if we add up all the dQ’s,

f .
dependent of intermediate notation we will obtain Q) We now apply the common-

sense method to find dF, due to d Q, For gener-

ality, instead of a = 1 and [ = 7, we will employ the symbols a and [.
From (2.1), the magmtude dF = |dF| of the force dF between q and dQ,
separated by R = \/a? +y? is dF = kq(d Q)/R?. We now find the component
dF, of the force dF along x. From dF in Figure 2.10(b), this component is
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dF, = —dF cosf. Then, with d Q = (Q /l)dy, we obtain

kq(dQ)cos®  kqQ cosfdy

dF, = —dF cosf = — @) @iy

(2.18)

We've got to make a decision now: to eliminate y in favor of 6, or vice versa. We
choose to eliminate y. Figure 2.10(b) shows that y = atan6. Thus

= (dy/d6)d6 = a(dtan6/d6)do = asec® 6dO
and
a’ +v* = a*(1 +tan?0) = a’ sec? 6,
50 (2.18) becomes

kq Q cos6(asec? 0d0) kg Q cos

dF, = — =
x la3 sec? 6 al

do. (2.19)

We're now ready to actually employ the integral calculus (so far we’ve only
used differential calculus to express dF,). Before doing so, let’s note that for
two reasons this problem is more complex than integrating to add up the total
charge Q on an object (as in Section 1.9). First, force is a vector, whereas charge
is a scalar, so we have to determine vector components in this case. Second, the
value of the force on g depends on its position, whereas the amount of charge on
an object doesn’t depend on the position of whoever is adding up that charge.
In Chapter 5, where we discuss electrical potential, we will perform integrals of
intermediate complexity: they are scalars (as for charge), but they depend on
the position of the observer (as for force).

Now we do the integral to obtain F,. We have

04
F, = /dF - —kq—Q cos0do = —kZlQ'sinG . (2.20)
6_

From Figure 2.10(b), with @ = 1 and [ = 7, the maximum and minimum angles

0, and 6_ satisfy sin0, = ([/2)/+/a? + (l/2)? = —sin6_. Thus

Fo—__ _kaQ
) aya? +[1/2)?

Fora=1m,[=7m,q=10"" C, and Q=5 x 107 C, (2.21) yields F, =
—12.362450 x 1072 N. It is very close to the value obtained numerically from
Table 2.2. For a different set of inputs—a=3m, =4 m, g=4 x 10™° C, and
Q =-2x107? C—(2.21) yields F, =—6.656 x 10~ N. The advantage of the
general analytical expression (2.21) over brute force summation should be ap-
parent. On the other hand, a computer can reevaluate a spreadsheet sum very
quickly when the inputs change.

Checks are very important, in both numerical and analytical work. If you
derive a result that is very general, it should work for specific cases whose answer
you already know, and therefore you should look for specific cases that can serve

2.21)
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Because of what it will teach you about calculus and vectors, the derivation of (2.21)
is in some ways the most important example in the book. Reread the statement of the
problem and its solution until you understand it well enough to explain every step to
someone else. Then try to reproduce the solution on your own. Understand it, don't
memorize it. Learning how to solve this type of problem, involving integral calculus,
represents a major level of intellectual achievement.

as checks. Without an analytic check that the spreadsheet or computer gives the
correct result in at least one case, we cannot be sure that it gives the correct result
in any case. With this in mind, comparison of our analytic work of (2.21) with
Table 2.2 produced from the spreadsheet shows excellent agreement. Another
check that can be made is to take the limit where the length [ goes to zero;
the line charge contracts to a point charge. Then (2.21) yields F, = —kq Q /a?,
which is what we expect, by (2.1).

For an infinite wire, it is convenient to employ the charge per unit length 2,
rather than the charge Q, which becomes infinite. In the present case, we have

L= Q/l, and now weletl/a — oo. Thus we can neglect ain /a2 + ([/2)2. Thus
Q/va?+ (/2?2 - Q/(1/2) = (20Q/1) = 2x. Hence (2.21) yields

F, = _Zkr_qx, r=0/I, l/ja — oo. (2.22)

Here is a way to check this r~! result. Consider two identical infinite, parallel
rods, and an observation charge g in their plane at a position that makes one
of the rods twice as far away. See Figure 2.11.
240 Lgt a pair of closely spacgd lines originate ra-

dially at the observer and intersect both rods.

do / The distance r’ to the intersection of the ra-

dial lines is twice as big for the further rod as
q for the nearer rod. If the charge intersected by
the radial lines is d Q for the nearer rod, then

a a the charge intersected is 2d Q for the further
rod. By (2.4), with its inverse square depen-
dence on distance and its linear dependence
on charge, for each corresponding element in-
tersected by the radial lines the force due to
the further rod is (1/2)?2 = 1/2 that due to
the nearer rod. Hence, if both rods are infi-

/
A
A
\

Figure 2.11 Charge g and
elements of charge dg and 2dg
from two rods of equal charge

density. The magnitudes of the nite, adding up the effects for all elements of
forces on g are the same in each charge will give a total force due to the fur-
case. ther rod that is one-half that due to the nearer

rod. This is in agreement with the r~! result
of (2.22). Only by doing the integral, however, can we obtain the coefficient of
proportionality.

In contrast to the spreadsheet result, the integral calculus result is exact. If
we set up the spreadsheet calculation with an arbitrary position for g, so we
also compute F, then by changing the position of g, the spreadsheet will nearly
instantly calculate the force at any position. However, numerous changes have to
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be made to obtain the integral calculus result. Although this problem—to find the
force on g if it is placed at any position in the plane—can be done in a closed form,
there are many problems where even a slight change in the observation point will
cause the resulting integrals to be vastly more complicated or even unsolvable.
It is straightforward to use calculus to obtain the force on a charge g placed at
the center of a uniformly charged half-circle. However, if g is moved slightly
off-center, the problem cannot be solved by elementary methods of calculus.
The numerical approach will work equally well for g both on- and off-center.
Don’t think that the numerical approach is always applicable. Try evaluating

(1+x)1? -1
X

for x = 10739, To 30 decimal places, the answer is nearly one-half, but your cal-
culator will give you zero because it doesn’t keep numbers to 30 places. However,
by making a straight line approximation to (1 + x)!/? near x = 0, with slope at
x = 0 given by (d/dx)(1 +x)'/?|x—0 = 3(1 + x)!/?|x—o = 3, we can obtain the
desired result.

Study and Problem Solving Strategy

As you have seen, the subject of electricity and magnetism, or E&M to the
cognoscenti, requires a mathematical background in algebra, geometry, and
trigonometry. Chapter 1 required integral calculus, and the current chapter re-
quires vectors and integral calculus.

Some Advice on How to Succeed in E&EM

This chapter introduces more difficult material, involving both vectors and cal-
culus. In performing integrals over vectors, first obtain the small vector you are adding
up, and then find its components. Only after this should you consider the integral
calculus aspect (which involves, after all, just a method to perform summation).
Many students worry so much about getting the calculus right that they miss the
vector aspects of a problem.

The biggest hindrance to student understanding is an inability to see common-
sense simplicity. There is a natural and understandable reason for this; many
students are so involved in learning how to perform technical details that they
don’t see the forest for the trees. If you can’t efficiently and correctly deal with the
details, then you won’t have the leisure to sit back and think about the overview;
you'll be exhausted simply by the task of getting the details right. Nevertheless,
you have not completed a problem until you have looked back on it and asked
the common sense questions that your grandmother might ask: for example,
“are there any comparisons that can be made to related problems?” In the next
chapter, we will study the electric field along the axis of a uniform disk of charge.
Far away from the disk, the field should look like that for a point charge; up close
it should look like that for an infinite sheet. Both of these extreme cases provide
common sense checks, and are questions that could be asked by someone who
has not even studied E&M!
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Finally, a word about proportionality and scaling. In Section 2.4, we deter-
mined the force between two protons in a helium nucleus not by computing it
directly, but by comparing it with the already known force between a proton
and an electron in a hydrogen atom. We used the fact that the magnitudes of
the charges on the electron and proton are the same, but that the separation of
two protons in the nucleus is a factor of 10~ smaller than the electron—proton
separation in the atom. Then, applying the inverse square law for electricity,
we deduced that the Coulomb repulsion between two protons in the nucleus is
10'0 bigger than the Coulomb attraction between an electron and proton in a
hydrogen atom. This type of proportional reasoning is essential in scientific and
engineering problems. Scientists and engineers repeatedly must consider how
certain effects scale as various dimensions or velocities change. They don’t re-
compute or remeasure everything—when appropriate, they scale the results.
This is the basis of wind tunnels, for example, as used in aircraft design. Suc-
cessful science and engineering students know how to employ this method of
reasoning.

Some Comments about Problem Solving

Asking your own questions. Problems do not come out of nowhere. Someone
has to think them up. For this book, the author had to think them up—with the
assistance of a vast array of problems available from other books on this subject.
Here is a secret. Not only can problems be solved, they can also be made up.
You can do it yourself (it is an example of what has been called active learning).
For each chapter, spend a minute or two thinking about how to make up an
interesting variant on at least one problem. Here are some possibilities.

1. If you don’t know what an equation means, try putting in numbers or, if
appropriate, try drawing a graph. This is the most important rule of all! It’s
how scientists and engineers get started when they confront an equation
whose meaning they don’t understand.

2. Think about how to turn a doable problem to an undoable one.
3. Think about how to turn an undoable problem to a doable one—and do it.

4. Think about how to design an experiment. For example, in the electrometer
problem, the string might have a certain breaking strength, and we want to
know how much charge we can put on an object before the tension exceeds
this breaking strength.

5. Make up a problem in which numbers, graphs, and equations are relevant;
in the problems on the cancellation of two electrical forces, a sketch of the
strengths of each force as a function of position is very revealing.

6. Think up what-if questions.

Although the bread and butter of physics is its ability to give precise answers
to difficult but well defined questions, you should avoid the tendency to think
exclusively in terms of stylized, closed-form mathematics problems. Often a sim-
ple qualitative question, whose answer can be given with a simple yes or no, or
a direction, or greater than or less than, can teach a concept more efficiently
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“You can’t learn to swim if you don’t jump in the water.”
—Anonymous

“Tourist to passerby in Manhattan: How do you get to Carnegie Hall?"
Violinist Jascha Heifitz, without breaking stride: “Practice, practice, practice!”

“To learn to play the blues, first you have to learn to play one song really well."
—Mance Lipscomb (1971), musician from Navasota, Texas

"“The secret to success is being able to find more than one way to get the job done.”
—Anonymous

and effectively than a full-blown problem that requires an enormous amount of
calculation. In any situation, even outside physics, one must be careful not to
lose the overview in a confusion of details.

Thinking clearly. When you begin a problem, draw a figure in which the
variables are clearly defined. When you complete a problem, ask, “What have
[ learned?” Think about how to modify the problem, and ask, “What changes
does the modification cause?” Learn how to recognize problems that you have
seen before, even when in disguise: if an automobile mechanic knows how to
change a tire on a Ford, he cannot not plead ignorance when someone brings
him a Chevrolet.

Styles of studying. There are different styles of studying. Many students work
by themselves and don’t spend much time giving explanations to others. In so
doing, they lose the opportunity to learn while explaining. On the other hand,
those who work only in groups are missing the opportunity to build their intel-
lectual muscles; you don’t go to the gym to watch others get in shape. Everyone

should be doing some of both.

Problems

2-2.1 (a) If in Robison’s experiment (see
Figure 2.1), q1 (with mass m,) is directly above g3,
show that the equilibrium condition is kqyq2/7> =
mg. Neglect the mass of the holder. (b) If m
doubles, how does r change? Does the depen-
dence of r on m; make sense qualitatively? (c) For
i =q=q, m=75¢g and r =4.5 cm, find g.
(d) How would the equilibrium condition change if
the top arm (held at a loose pivot) had mass M and
length [?

2-2.2 (a) In a Coulomb’s law experiment, as in
Figure 2.2, a torque of 1.73 x 10~ N-m is mea-
sured for a 2° twist. Find the torsion constant «.
(b) g1 =q2 =2.4 x 10~% C causes a twist of 5°.
Find r.

2-3.1 Joan and Laura are separated by 15 m.
Joan has a charge of 4.50 x 10~® C, and Laura

has a charge of —2.65 x 107¢ C. Find the force
between them, and indicate whether it is attractive
or repulsive.

2-3.2 Two regions of a thundercloud have charges
of &5 C. Treating them as point charges a distance
3 km apart, determine the force between these re-
gions of charge, and indicate whether it is attractive
or repulsive.

2-3.3 The basketball player Michael Jordan is
about 2 m tall, and weighs about 90 kg. What equal
charges would have to be placed at his feet and his
head to produce an electrical repulsion of the same
magnitude as his weight?

2-3.4 Two point charges are separated by 2.8 cm.
The force between them is 8.4 mN, and the sum of
their charges is zero. Find their individual charges,
and indicate whether the force is attractive or
repulsive.



2-3.5 Show that, at fixed separation a, the max-
imum repulsion between two point charges of
total charge Q occurs when each charge equals

Q2.

2-3.6 Two point charges sum to —5 uC. At a sep-
aration of 2 cm, they exert a force of 80 N on
each other. Find the two charges for the cases when
(a) the forces are attractive, and (b) when they
are repulsive. [Answer: (a) q1 = =5.63 uC, g2 =
0.63 uC; (b) ¢ = —4.14 uC, g» = —0.858 uC.]

2-3.7 Consider two space ships of mass M=
1000 kg in outer space. What equal and opposite
charges would have to be given to them so that once
an earth day they make circular orbits about their
center at a separation of 200 m? Neglect their grav-
itational interaction, which at that distance would
cause them to orbit only every 563 days.

2-3.8 Two point charges sum to —0.5 uC. At a
separation of 2 cm, they exert a force of 80 N on
each other. Find the two charges for the cases when
(a) the forces are attractive, and (b) when they are
repulsive.

2-3.9 In esu-cgs units, where length is measured
in cm, time in s, and mass in g, we take k., = 1. (a)
Find the esu unit of charge, called the statcoulomb
(sC) in terms of the SI unit of charge (C). (b) Find
the charge of an electron in esu units. [Answer:
1 C=3x10°5C, epy, =4.8 x 10719 5C.]

2-4.1 Refer to the electrometer example of
Figure 2.4. Let the tension at breaking be T, =
2mg. Find the value of 0,,,, and an algebraic expres-
sion for Gax-

2-4.2 In the electrometer example, find the
angles and tensions if g; = 0.925 x 10~® C and
qr = 3.7 x 1078 C? (Hint: No complex calculation
is necessary. You can use results already obtained. If
you are stumped, have a look at Problem 2.4.4a.)

2-4.3 In the electrometer example of Figure 2.4,
if the angles are 0 for q; = qr = q, what are they for
dL = 24, qr = 3q? Hint: If you are stumped, have
a look at Problem 2-4.4(a).

2-4.4 Two identical masses are suspended by
identical strings. If the charges are the same, the
strings make equal angles to the vertical. (a) If
the charges are different, are the angles different?
(b) If the masses are different, are the angles dif-
ferent? (Hint: Make the charges or masses very

different.)
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2-4.5 A positively charged bead g can slide with-
out friction around a vertical hoop of radius R. A
fixed positive charge Q is at the bottom of the
hoop. Counterclockwise angular displacements of
q relative to Q correspond to 6 > 0. (a) Find the
electrical force on g, as a function of #. (b) Find
the component of this force along the hoop. See
Figure 2.12.

Q
Figure 2.12 Problem 2-4.5.

2-5.1 Let Q1 =5x10"% C be at (0,0), and
Q,=-4x10"8Cbeat (3,0),in m. A charge Q5
is placed somewhere on the x-axis where the force
on Q3 is zero. (a) If the value of Q3 is adjusted so
that the force on Q) is zero, find the force on Q.
(b) Find where Q5 should be placed to feel no net
force. (c) Find the value of Q3 that will make Q,

feel zero net force.

2-5.2 Consider two charges, Q1 =5 x 1078 C at
(Icm,0),and Q> = —4 x 1078 Cat(—=2cm, 4 cm).
We want to find the position where a third charge
Q should be placed for it to feel zero net force.
(a) Present two methods for doing this.
(b) Solve the problem by either method.

2-5.3 Three charges are at the corners of an equi-
lateral triangle of side [ = 10 cm. See Figure 2.13.
If 2 uC is at the origin, and —3 uC is at ([, 0), find
the force on 4 uC, at (1/2, v/31/2).

2 -3
Figure 2.13 Problem 2-5.3.
2-5.4 Three charges Q are placed at the corners

(0, 0), (a, 0), and (0, a) of a square. See Figure 2.14.
(a) Find the force on g placed at (a, a). (b) Find the
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force on q placed at (a/2, —a/2). (c) Find the force
on g placed at (—a, —a).

00 L

00 LX)
Figure 2.14 Problem 2-5.4.

2-5.5 Repeat the force calculation for the

example of the addition of two noncollinear
forces on a charge q. However, now let q; be at the
origin, and rotate about the z-axis to make g, along
the new x-axis. See Figure 2.15. To produce this
requires, in Figure 2.7, rotating the line connect-
ing q; and g, by an angle ¢, where m =tan¢ =
(r2sin6> — 0)/((r2 cos @, — 1) = —8.800. Thus, in
radian measure, ¢ = —83.52°(x/180) + = = 1.683
radians. (We add 7 because we know, by Fig-
ure 2.7, that ¢ is in the first or second quadrant,
whereas the calculator returns only a value in the
first or fourth quadrant.) In degrees, ¢ = 96.5°. By
putting g1 at the origin, and rotating clockwise by
¢, we put g, along the x-axis, at a distance r, =
V(r2sin; — 0)2 + ((r2 cos 6, — r1)2 = 0.247m, and
we put g a distance r; away from the origin, at an
angle of m — ¢ = 1.458 radians, or 83.52° to the
x-axis. Verify that |F| is the same as before, and
that it is rotated clockwise by 96.5° relative to its
previous value. This property, that the force rotates
by the same angle as the coordinate system, is what
we mean when we say that force is a vector. Thus
Figure 2.15 was obtained by rotating Figure 2.7.

B

A s

F F
A N D
\

Figure 2.15 Problem 2-5.5.

2-6.1 Use the general symmetry argument to
show that, along the perpendicular bisector of the
uniformly charged rod discussed in Section 2.7,
F, =0. Hint: Assume that F,#0, and then
consider how the rod and F, transform under ro-
tations of 180° about the x-axis. Would the argu-

ment work if you considered a reflection (x, y, z) —
(x, —v, z) of the rod and F,?

2-6.2 An octagon has charges —q at each of its
eight vertices, and charge Q at its center. See Fig-
ure 2.16. (a) Use a general symmetry argument to
show that the force on Q is zero. (b) Let the charges
—q be replaced by infinitely long line charges —x
normal to the page. Use a general symmetry argu-
ment to show that the force on Q is zero. (To prove
this, we don’t even need to know the force between
Q and a line charge?!)

°

o %o

o & o

o o
°

Figure 2.16 Problem 2-6.2.

2-7.1 A line charge with total charge Q >0 uni-
formly distributed over its length [ extends from
(0, 0) to (I, 0). See Figure 2.17. (a) Find the force
on a charge g > 0 placed a distance a to its right, at
(I + a, 0). (b) Verify that this force has the expected
inverse square behavior for large a.

Figure 2.17 Problem 2-7.1.

2-7.2 A long rod of charge per unit length A > 0
is normal to the xy-plane and passes through the
origin. In addition, a charge Q >0 is located at
(0, a, 0). See Figure 2.18. Find the position where
a third charge g will feel zero force.

Figure 2.18 Problem 2-7.2.

2-7.3 Use the computational symmetry argument
to show that F,, = 0 along the perpendicular bisec-
tor of the uniformly charged rod of Section 2.7.



2-7.4 A line charge with total charge Q > 0 uni-
formly distributed over its length [ extends from
(0, 0) to (I, 0). Find the force on a charge g that is
placed anywhere in the xy-plane.

2-7.5 Find the force on a charge q at (a, a) due
to a charge Q uniformly distributed over a rod of
length L with one end at (0, 0) and the other end
at (0, L). See Figure 2.19.

q

Q
[ —>

Figure 2.19 Problem 2-7.5.

Q—-@

-

2-7.6 A rod of length a whose ends are at (0, 0)
and (a, 0) has a charge density A = (Qo/a?)x. See
Figure 2.20. (a) Find the total charge Q on the rod.
(b) Find the force on a charge g at (—b, 0). (c) Verify
that the force has the correct limit as b — oo.

q A=(Qo/a*)x

—— a4 —>

Figure 2.20 Problem 2-7.6.

2-7.7 A charge Q is uniformly distributed over
the upper half of a circle of radius a, centered at
the origin. See Figure 2.21. Find the force on a
charge g at the origin.

Q

q

Figure 2.21 Problem 2-7.7.

2-7.8 A charge Q is uniformly distributed over
the first quadrant of a circle of radius a. See
Figure 2.22. Find the force on a charge g at the
center of the semicircle.

q

Figure 2.22 Problem 2-7.8.

Problems 105

2-7.9 A charge Q is uniformly distributed over
an arc of radius a and angle « that extends from
the x-axis counterclockwise. See Figure 2.23. Find
the force on a charge g at the center of the
semicircle.

Q

q

Figure 2.23 Problem 2-7.9.

2-G.1 Many electroscopes have a circular con-
ducting base that is both above and connected
to a charge detector device (often a needle that
can rotate relative to its mount, or flexible foil).
They work by a combination of electrostatic in-
duction at the base (due to the source charge),
and repulsion of like charges at the detector (nee-
dle or foil). See Figure 2.24. (a) If positive charge
is brought near the base of an electroscope, what
is the sign of the charge attracted to the base?
(b) What kind of charge must be at the needle or
foil?

—— Base

L

Figure 2.24 Problem 2-G.1.

2-G.2 Show that, for |nx| < 1, (1 +x)" ~ 1 + nx.
This gives the first two terms, for small x, in what
is known as the MacLaurin expansion.

2-G.3 Determine the behavior of (x? +1)7 — x
for large x; it approaches zero, but how does it
approach zero?

2-G.4 In the spreadsheet calculation of Table 2.2,
the sums for odd n seem to provide an upper
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limit for the integral. (a) Explain why. The sums
for n=2,4,6,8,10 seem to be a lower limit for
the integral. However, for n = 12 and larger, the
approximate value is less than the exact integral.
(b) Explain why. Hint: For odd n, all the charge is
approximated by charge that is nearer than it really
is, but that is not the case for even n.

2-G.5 Two charges —Q are fixed at (0,a) and
(0, —a). A third charge, g, is constrained to move
along the x-axis. See Figure 2.25. (a) Find the force
on g for any value of |x| < a; (b) convince your-
self that, for |x| < a, this force is just like that for a
harmonic oscillator, and obtain the effective spring
constant K; (c) if g has mass m, find the frequency
of oscillation of g about the origin. Hint: Expand
(a & x)~? for small x.

Figure 2.25 Problem 2-G.5.

2-G.6 In the previous problem, the motion of
q was stable near the origin for motion along
x. Discuss the stability of the motion if small
displacements along the y-axis are allowed. Con-
sider x = 0 and |y| < a.

2-G.7 A long rod of charge per unit length A is
held vertical. At its midpoint, one end of a massless
string of finite length [ is attached. At the other end
of the string is a charge g, with mass m. See Fig-
ure 2.26. Find the equilibrium angle of the string
to the vertical, and find the tension in the string at
that angle.

X/ N@

Figure 2.26 Problem 2-G.7.

2-G.8 A square of side a, of uniform charge

per unit area o, is centered about the origin
of the xy-plane with sides parallel to the x- and
y-axes. A charge g lies a distance [ along its per-
pendicular bisector. See Figure 2.27. (a) By build-
ing up the square from lines in the xy-plane of
area ldz, show that the force on g satisfies |F| =
4kqo sin~![a?/(a® + 41%]. (b) Show that, as [/a —
0o, |F| = (kQq/1?). (c) Show that, as l/a — 0,
|F| — (2rko)q. Hint: Modify (3.21) to |dF| =
kqd Q /1\/I? + a2 /4, use the direction cosine factor
1{/I2 + a?/4, and then integrate over dF, to get F,.
A trig substitution like z = a tan § may be helpful.

q+ y
-/

/

Figure 2.27 Problem 2-G.8.

2-G.9 Consider a ring of radius a, centered

at the origin of the xy-plane. It is of uniform
charge density and has total charge Q. A charge g
lies on the x-axis a distance [ from the origin. See
Figure 2.28. (a) Find the force on g due to the cir-
cle, for [ > a. (b) Find the force on g due to the
ring, for | < a. This example shows that the charge
on the ring does not behave as if it were centered
at its geometrical center (except in the limit where
lja — 00).

Q

[—»

A,
3

Figure 2.28 Problem 2-G.9.

2-G.10 Conducting spheres are subject to the am-
ber effect. Hence, as two equally charged conduct-
ing spheres of radius a approach each other, in
addition to the inverse square law of repulsion,
there should be an effect due to the charge on
one polarizing the other, and vice versa (i.e., elec-
trostatic induction). Using advanced methods, it is
possible to determine this effect exactly, but we



already know enough to determine the most im-
portant contribution. When the separation r is only
a few times a, this polarization effect can cause de-
viations from pure inverse square on the order of a
few percent. See Figure 2.29. (a) Does polarization
make the net force appear weaker or stronger? (b)
What dependence on distance do you expect the
most important correction to take? (c¢) How would
you determine, from experimental data of force F
versus separation 7, how large a coefficient it has?
Hint: For large 7, plot r>F vs. 3.
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- r >

Figure 2.29 Problem 2-G.10.

2-G.11 Repeat the considerations given in Prob-
lem 2.6.10 for two conducting spheres of equal and
opposite charge.



